Classical and enriched finite element formulations for Bloch-periodic boundary conditions
نویسندگان
چکیده
In this paper, classical and enriched finite element formulations to impose Bloch-periodic boundary conditions are proposed. Bloch-periodic boundary conditions arise in the description of wave-like phenomena in periodic media. We consider the quantum-mechanical problem in a crystalline solid, and derive the weak formulation and matrix equations for the Schrödinger and Poisson equations in a parallelepiped unit cell under Bloch-periodic and periodic boundary conditions, respectively. For such second-order problems, these conditions consist of valueand derivative-periodic parts. The value-periodic part is enforced as an essential boundary condition by construction of a value-periodic basis, whereas the derivative-periodic part is enforced as a natural boundary condition in the weak formulation. We show that the resulting matrix equations can be obtained by suitably specifying the connectivity of element matrices in the assembly of the global matrices or by modifying the Neumann
منابع مشابه
A boundary element/finite difference analysis of subsidence phenomenon due to underground structures
Analysis of the stresses, displacements, and horizontal strains of the ground subsidence due to underground excavation in rocks can be accomplished by means of a hybridized higher order indirect boundary element/finite difference (BE/FD) formulation. A semi-infinite displacement discontinuity field is discretized (numerically) using the cubic displacement discontinuity elements (i.e. each highe...
متن کاملA Finite Element Model for Simulating Flow around a Well with Helically Symmetric Perforations
In a perforated well, fluids enter the wellbore through array of perforation tunnels. These perforations are typically distributed in a helical pattern around the wellbore. Available numerical models to simulate production flow into cased-and-perforated vertical wells have complicated boundary conditions or suffer from high computational costs. This paper presents a simple and at the same time ...
متن کاملتحلیل دینامیکی سدهای بتنی وزنی با مدلسازی مخزن به روشهای لاگرانژی و اویلری
Because of different behavior of reservoir water and dam material, the determination of hydrodynamic pressure during earthquake is very complicated. Thus, different formulations have been presented for modeling of the dam reservoir system under dynamic loading such as earthquake. These formulations can be categorized into two general groups, which are Lagrangian and Eulerian, each having advant...
متن کاملUniversal spectral properties of spatially periodic quantum systems with chaotic classical dynamics
We consider a quasi one-dimensional chain of N chaotic scattering elements with periodic boundary conditions. The classical dynamics of this system is dominated by diffusion. The quantum theory, on the other hand, depends crucially on whether the chain is disordered or invariant under lattice translations. In the disordered case, the spectrum is dominated by Anderson local-ization whereas in th...
متن کاملFree Vibration Analysis of a Sloping-frame: Closed-form Solution versus Finite Element Solution and Modification of the Characteristic Matrices (TECHNICAL NOTE)
This article deals with the free vibration analysis and determination of the seismic parameters of a sloping-frame which consists of three members; a horizontal, a vertical, and an inclined member. The both ends of the frame are clamped, and the members are rigidly connected at joint points. The individual members of the frame are assumed to be governed by the transverse vibration theory of an ...
متن کامل